Strong regional trends in extreme weather over the next two decades under high- and low-emissions pathways

Strong regional trends in extreme weather over the next two decades under high- and low-emissions pathways
Strong
      regional
      trends
      in
      extreme
      weather
      over
      the
      next
      two
      decades
      under
      high-
      and
      low-emissions
      pathways
-

IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.001

Gulev, SK et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 287–422 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.004

Samset, B. H. et al. Steady global surface warming from 1973 to 2022 but increased warming rate after 1990. Commun. Earth Environ. 4400 (2023).

Article 

Google Scholar

Smith, S. J., Edmonds, J., Hartin, C. A., Mundra, A. & Calvin, K. Near-term acceleration in the rate of temperature change. Nat. Clim. Change 5333–336 (2015).

Article 

Google Scholar

Loarie, S. R. et al. The velocity of climate change. Nature 4621052–1055 (2009).

Article 
CAS 

Google Scholar

O’Neill, B. C. & Oppenheimer, M. Climate change impacts are sensitive to the concentration stabilization path. Proc. Natl Acad. Sci. USA 10116411–16416 (2004).

Article 

Google Scholar

Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11689–695 (2021).

Article 

Google Scholar

Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heat wave on the Pacific coast of the US and Canada in June 2021. Earth Syst. Dyn. 131689–1713 (2022).

Article 

Google Scholar

Ranasinghe, R. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1767–1926 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.014

Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8469–477 (2018).

Article 

Google Scholar

Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 1513–1766 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.013

IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896

Sedláček, J. & Knutti, R. Half of the world’s population experience robust changes in the water cycle for a 2 °C warmer world. Environ. Res. Lett. 9044008 (2014).

Article 

Google Scholar

Lehner, F. & Stocker, T. F. From local perception to global perspective. Nat. Clim. Change 5731–734 (2015).

Article 

Google Scholar

Chavaillaz, Y., Joussaume, S., Dehecq, A., Braconnot, P. & Vautard, R. Investigating the pace of temperature change and its implications over the twenty-first century. Climatic Change 137187–200 (2016).

Article 

Google Scholar

Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst. Sci. Data 122959–2970 (2020).

Article 

Google Scholar

Sanderson, B. M., Oleson, K. W., Strand, W. G., Lehner, F. & O’Neill, B. C. A new ensemble of GCM simulations to assess avoided impacts in a climate mitigation scenario. Climatic Change 146303–318 (2018).

Article 

Google Scholar

Hawkins, E. & Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 39L01702 (2012).

Article 

Google Scholar

King, A. D. et al. The timing of anthropogenic emergence in simulated climate extremes. Environ. Res. Lett. 10094015 (2015).

Article 

Google Scholar

Diffenbaugh, N. S. & Scherer, M. Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Climatic Change 107615–624 (2011).

Article 

Google Scholar

Chen, D. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) 147–286 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.003

Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6034009 (2011).

Article 

Google Scholar

Nguyen, T.-H., Min, S.-K., Paik, S. & Lee, D. Time of emergence in regional precipitation changes: an updated assessment using the CMIP5 multi-model ensemble. Clim. Dyn. 513179–3193 (2018).

Article 

Google Scholar

Mahlstein, I., Portmann, R. W., Daniel, J. S., Solomon, S. & Knutti, R. Perceptible changes in regional precipitation in a future climate. Geophys. Res. Lett. 39L05701 (2012).

Article 

Google Scholar

United Nations Framework Convention on Climate Change Paris Agreement (United Nations, 2015); https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf

Wilcox, L. J. et al. Accelerated increases in global and Asian summer monsoon precipitation from future aerosol reductions. Atmos. Chem. Phys. 2011955–11977 (2020).

Article 
CAS 

Google Scholar

Hawkins, E. & Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 37407–418 (2011).

Article 

Google Scholar

Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dyn. 11491–508 (2020).

Article 

Google Scholar

Persad, G. et al. Rapidly evolving aerosol emissions are a dangerous omission from near-term climate risk assessments. Environ. Res. Clim. 2032001 (2023).

Article 

Google Scholar

Schumacher, D. L. et al. Exacerbated summer European warming not captured by climate models neglecting long-term aerosol changes. Commun. Earth Environ. 5182 (2024).

Article 

Google Scholar

Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals, Revision 11 (CIESIN, 2018); https://doi.org/10.7927/H4F47M65

Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 91937–1958 (2016).

Article 

Google Scholar

Mackallah, C. et al. ACCESS datasets for CMIP6: methodology and idealised experiments. J. South. Hemisph. Earth Syst. Sci. 7293–116 (2022).

Article 

Google Scholar

Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11998–1038 (2019).

Article 

Google Scholar

Swart, NC et al. CCCma CanESM5 Model Output Prepared for CMIP6 CMIP Historical (Earth System Grid Federation, 2019); https://doi.org/10.22033/ESGF/CMIP6.3610

Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 152973–3020 (2022).

Article 

Google Scholar

Wyser, K. et al. The SMHI Large Ensemble (SMHI-LENS) with EC-Earth3.3.1. Geosci. Model Dev. 144781–4796 (2021).

Article 

Google Scholar

Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6eaba1981 (2022).

Article 

Google Scholar

O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 93461–3482 (2016).

Article 

Google Scholar

Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 1181716–1733 (2013).

Article 

Google Scholar

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 1461999–2049 (2020).

Article 

Google Scholar

Contractor, S. et al. Rainfall Estimates on a Gridded Network (REGEN)—a global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci. 24919–943 (2020).

Article 

Google Scholar

Ziese, M. et al. GPCC Full Data Daily Version.2018 at 1.0°: Daily Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data (GPCC, 2018); https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. An overview of the global historical climatology network-daily database. J. Atmos. Ocean. Technol. 29897–910 (2012).

Article 

Google Scholar

Gridded Population of the World, Version 4 (GPWv4): Population Count Adjusted to Match 2015 Revision of UN WPP Country Totals, Revision 11 (CIESIN, 2018); https://doi.org/10.7927/H4PN93PB

Sandstad, M., Schwingshackl, C. & Iles, C. Climate Extreme Indices and Heat Stress Indicators Derived from CMIP6 Global Climate Projections (C3S CDS, 2022); 1https://doi.org/10.24381/cds.776e08bd

Iles, C. E. Data and code archival for Iles et al. 2024, Nature Geoscience, ‘Strong regional trends in extreme weather over next two decades under high and low emission pathways’. Zenodo https://doi.org/10.5281/zenodo.12704988 (2024).

Hersbach, H. et al. ERA5 Hourly Data on Single Levels from 1940 to Present (C3S CDS, 2023); https://doi.org/10.24381/cds.adbb2d47

Contractor, S. Rainfall Estimates on a Gridded Network (REGEN) Based on Long-Term Station Data v.1–2019 (NCI Australia, 2019); https://doi.org/10.25914/5ca4c2c6527d2

Contractor, S. Rainfall Estimates on a Gridded Network (REGEN) Based on All Station Data v.1–2019 (NCI Australia, 2019); https://doi.org/10.25914/5ca4c380b0d44

Kim, Y.-H., Min, S.-K., Zhang, X., Sillmann, J. & Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 29100269 (2020).

Article 

Google Scholar

-

PREV “A top player and perfect” for BVB
NEXT As Houston heats up, will this September be as hot as last year’s?